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Abstract—Heart disease continues to pose a critical worldwide
health issue, more specifically in areas with insufficient access to
healthcare infrastructure and diagnostic systems. Conventional
diagnostic approaches often fall short in accurately detecting
and managing heart disease risks, resulting in unfavorable
outcomes. Machine learning presents a powerful means to
boost the precision and reliability of cardiovascular disease
prognosis and diagnosis. In this research, we introduced a
unified approach incorporating classification techniques for
detecting heart disease and regression techniques for forecasting
associated risks. The analysis utilized the dataset, named Heart
Disease, containing 1,035 instances. To mitigate the problem of
data disproportion, the SMOTE was implemented, producing
100,000 additional synthetic samples. Evaluation metrics such as
F1-score, recall, precision, accuracy, MAE, RMSE, MSE, and R?
were adopted to evaluate the performance of the models. Among
the classification algorithms, Random Forest delivered the most
notable results, attaining an accuracy of 0.972 on actual data and
0.976 on artificially generated data. For prediction modeling, for
both synthetic and real samples, linear regression produced the
best R2 values of 0.992 and 0.984, respectively, along with the
least amount of measurement errors. Furthermore, Explainable
Al methods were utilized to improve the comprehensibility of
the model outcomes. This paper emphasizes the transformative
capabilities of machine learning for diagnosing cardiovascular
disease and estimating risk levels, thereby supporting timely
interventions and enhancing clinical settings.

Index Terms—Disease Detection, Heart Diseases, Cardiovas-
cular Diseases, Explainable Al, and Machine Learning

I. INTRODUCTION

The global incidence of heart disease continues to have a
startlingly high prevalence. The phrase “Heart Disease Risk”
refers to the likelihood of individuals facing complications
or negative health outcomes from cardiovascular issues, in-
cluding coronary artery disease, heart failure, or arrhythmias.
These hazards not only endanger personal health and lives
but also place immense strain on healthcare infrastructures
and national economies [|1]. Heart illnesses are progressively
prevalent in low-resource environments, where diagnostic
capabilities and specialist treatments are often unavailable
[2]. As noted by the World Health Organization (WHO) in
2023 [3[], Heart disease is a significant public health hazard in
Bangladesh, resulting in 273,000 deaths annually. Of these,
cardiac attack is the leading cause, responsible for 34%
of total national mortality. Risk factors for cardiovascular
illness appear in multiple forms, including high cholesterol,
diabetes, obesity, hypertension, and lifestyles like unhealthy
diets and smoking. These are frequently intensified by deeper
contributors like hereditary traits, insufficient preventive care,

and limited awareness or delayed intervention [4]]. Since these
dangers frequently develop covertly, early identification and
consistent monitoring are essential [5]. Machine learning has
become a potent tool in recent years for identifying a variety
of illnesses across multiple domains, such as healthcare and
agriculture [|6], [7]. It has shown potential in forecasting
cardiovascular risk and identifying heart disease in early
phases. This provides a novel method for improving cardiac
healthcare outcomes [8]]. This study presents a machine
learning framework combining classification and regression
models to evaluate heart disease risk, offering an integrated
solution for immediate diagnosis and prognosis. A set of
ten classification and eleven regression models, including
sophisticated models such as Lasso, Ridge, TabNet, Light-
GBM, and CatBoost, was utilized. The Synthetic Minority
Oversampling Technique (SMOTE) was used to rectify the
imbalance in the data. The ML algorithms underwent a thor-
ough evaluation using performance indicators like F1-score,
recall, precision, accuracy, MCC, R2, MSE, RMSE, and MAE
for comprehensive assessment. Furthermore, Explainable Al
methods were introduced to make the models’ forecasts more
interpretable and trustworthy for clinical use. The following
headings are used to arrange the remaining portions of our
study. Section II explores previous literature and summarizes
ongoing methods and their drawbacks. Section III details
the dataset and methodology used for cardiovascular disease
detection and risk analysis utilizing machine learning. Section
IV analyzes and interprets the outcomes from the applied
methods. The results are condensed in Section V, which also
suggests possible directions for future research.

II. LITERATURE REVIEW

To predict the risk of cardiovascular disease, many
researchers have proposed various models and strategies
through machine learning, reflecting the importance of this
area in enhancing clinical outcomes. Despite considerable
attention, it remains a growing and actively evolving field. To
develop a comprehensive understanding of existing progress
and persistent obstacles in diagnosing and predicting heart
disease, several prior studies were reviewed and summarized
to illustrate the current research landscape. Rabbi et al. [9]
constructed an ensemble-based approach combining GNB,
DT, LR, KNN, SVM, and RF with advanced techniques
like stacking, bagging, voting, and boosting. Evaluated on
the Cleveland, Indicators of Heart Disease, and Framingham
datasets, the bagging ensemble achieved a top accuracy



of 97% on Framingham and Indicators, while the voting
ensemble reached 92% on Cleveland. The proposed BEMLA
consistently outperformed individual classifiers, offering a
robust solution for heart disease prediction. Ganie et al.
[10] enhanced cardiovascular disease forecasting using voting
and stacking ensembles derived from 15 base algorithms
trained on a couple of datasets. Six optimal models were
combined into meta-ensembles, with stacking achieving the
best performance. Statistical tests, including Friedman and
Holm’s post-hoc, validated the models’ superiority. SHAP-
based XAI was employed for interpretability, showing how
feature contributions impact predictions. Rohan et al. [11]
conducted an extensive evaluation involving 11 feature selec-
tion techniques and 21 classifiers for heart disease prediction.
Models included CNN, LSTM, GRU, BiLSTM, RF, SVM,
XGBoost, and more. XGBoost attained the most extraor-
dinary performance, with 97% accuracy, 98% sensitivity,
and an Fl-score of 0.98, outperforming all others across
multiple metrics. Nissa et al. [12] emphasized fast classi-
fication using boosting models like AdaBoost, LightGBM,
Gradient Boosting, RF, and CatBoost. AdaBoost achieved the
top performance in their study with 95% accuracy, though
tuning and evaluation issues were acknowledged that might
impact performance generalizability. Singh et al. [13] used
machine learning methods to forecast the occurrence of CHF
utilizing a smaller collection of features, to reduce diagnostic
expenses and improve the diagnosis of congestive heart
failure. To improve data quality and impute missing data, their
method combines KNN with the C4.5 technique for feature
optimization and anomaly elimination. The study contrasts
DNN with six machine learning algorithms: RF, SVM, NB,
DT, LR, and KNN, assessing metrics like Fl-score, speci-
ficity, and accuracy. The DNN outperformed other methods,
recording 95.30% accuracy. Husnain et al. [|14] showcased
the potential of artificial intelligence to forecast heart diseases
using methods like neural networks SVM, and RF. The neural
network surpassed conventional diagnostic tools, achieving
92% accuracy for high-risk patient identification. Mienye et
al. [15] introduced a method that integrates SHAP-based
interpretability, Bayesian hyperparameter optimization, and
robust ensemble techniques. Ensemble models, including Ad-
aBoost, RF, and XGBoost, were evaluated. Their optimized
XGBoost achieved notable results on the Cleveland dataset,
with 0.971 specificity and 0.989 sensitivity. Nonetheless, the
study’s strong reliance on Bayesian optimization may not
ensure peak results across all data. Abuhaija et al. [16]
explored seven classifiers, multilayer perceptron, artificial
neural network, LR, SVM, DT, KNN, and Naive Bayes. A
correlation-based filter was used to determine key features.
Their evaluation based on precision, accuracy, specificity, and
sensitivity showed that the J48 decision tree attained the
greatest accuracy of 95.76%. Bhatt et al. |17] developed a
predictive method to lower heart diseases mortality. They
used Huang initialization with k-modes clustering and tested
models such as RF, DT, XGBoost, and Multilayer Perceptron
on a Kaggle dataset of 70,000 entries. The cross-validated
MLP model achieved the highest accuracy of 87.28%, out-
performing others. Chandrasekhar et al. |18 utilized six ML
models for heart disease forecasting using the IEEE Dataport
and Cleveland datasets. AdaBoost attained 90% accuracy on

the IEEEDataport, whereas LR attained 90.16% accuracy on
the Cleveland. A soft voting ensemble increases the accuracy
to 95% and 93.44%, respectively.

III. MATERIALS & METHODS
This study focuses on detecting heart disease and predict-

ing related risks through both classification and regression
methods using the heart disease dataset. The methods used in
this study are depicted in Figure |1} The overall methodology
covers model training, data preprocessing, and the entire
structure of the suggested approach.

Fig. 1. Suggested Workflow Diagram for Machine Learning-Based Cardio-
vascular Disease Diagnosis and Prognosis

A. Dataset

The “Heart Disease dataset” utilized in this research was
sourced from “Kaggle” [19]]. It comprises patient-related
information that is essential for evaluating and forecasting
the probability of cardiovascular disease. The dataset in-
cludes 16 attributes, offering insights such as peak heart
rate, cholesterol, blood pressure, sex, age, ECG readings,
chest pain occurrence, and other vital features instrumental in
assessing cardiac risk. It consists of 1,035 entries in total, 504
representing healthy cases, and 531 indicating cardiovascular
illness. The dataset is complete without any null values, and
every feature is provided as numerical values.

B. Data Preprocessing

We conducted several preprocessing steps to prepare the
dataset effectively. To ensure interoperability with machine
learning models, label encoding was used to transform cate-
gorical data into numerical form. Although the dataset did not
contain any missing values, we defined an imputation strategy
for potential gaps: median values for numerical fields and
mode values for categorical fields. The Interquartile Range
(IQR) approach was used to identify and eliminate outliers in
continuous characteristics. Additionally, feature scaling was
applied to normalize the dataset, ensuring that all attributes
contributed proportionately during model training and no
single feature dominated due to its scale.

C. Synthetic Data Generation

To mitigate the imbalance in class distribution, we applied
the Synthetic Minority Over-sampling Technique (SMOTE).
This method synthesizes new examples by interpolating be-
tween samples from the minority class and their nearest
neighbors. Using SMOTE, we created an additional 100,000
synthetic instances to balance the dataset better. Subsequently,



we divided both the original and artificially balanced datasets
into testing and training sets using a 20:80 ratio.

D. Model Training

This section explains the process used to train both re-
gression and classification models. To generate accurate and
consistent forecasts, we initially performed the required pre-
processing procedures. SMOTE was applied to address the
skew in class distribution, ensuring that the model would not
be disproportionately influenced by the dominant class. The
training was organized into two main stages: one focused
on classification and the other on regression. Each stage
was further broken into two scenarios: before and after the
application of SMOTE. For classification tasks, we trained
multiple classifiers to effectively separate the classes. We uti-
lized both traditional and ensemble methods to boost predic-
tion accuracy and overall model reliability. In the regression
phase, several algorithms were used to estimate continuous
output values and capture intricate patterns in the data. The
classification phase involved ten ML classification models,
including Light Gradient Boosting Machine (LightGBM),
Extreme Gradient Boosting (XGBoost), Gradient Boosting
(GB), K-Nearest Neighbors (KNN), TabNet, CatBoost, De-
cision Tree (DT), Random Forest (RF), Gaussian Naive
Bayes (Gaussian NB), and Support Vector Machine (SVM).
For prediction heart disease, we utilized eleven regression
models: CatBoost Regressor, LightGBM Regressor, Extreme
Gradient Boosting Regressor (XGBR), K-Nearest Neighbors
Regressor (KNNR), Decision Tree Regressor (DTR), Random
Forest Regressor (RFR), Gradient Boosting Regressor (GBR),
Lasso, Ridge, and Support Vector Regressor (SVR).

E. Performance Parameters

To assess the suggested approach, a comprehensive set of
evaluation metrics was employed. Classifiers were measured
using balanced accuracy (Acc), accuracy, precision, recall,
and Fl-score. For regression models, the evaluation relied
on metrics such as Matthews Correlation Coefficient (MCC),
R-squared (R?), Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and Mean Squared Error (MSE), cap-
turing both prediction quality and reliability. The definitions
and mathematical expressions for each metric are detailed
below.

Accuracy is the percentage of accurately identified outcomes
relative to the total predictions, serving as a general metric
for classification performance.
TP+ TN
Accuracy = (€))
TP+TN + FP +FN

Precision reflects the classification model’s_effectiveness in
detecting each class by computing the fraction of true posi-
tives among predicted positives.

L TP
Precision = ————— 2
TP+ FP
Recall, expressed as the ratio of true positives to the sum
of false negatives and true positives, assesses the model’s
capacity to detect positive results.
TP
Recall = ———— 3)
TP+ FN
The F1 Score is a statistic that calculates the harmonic
mean of recall and precision to assess the classifier’s overall

performance.

Recall X Precision
Fl Score =2 X ——————— 4)
Recall 4 Precision

The Matthews Correlation Coefficient, or MCC, measures
the accuracy of binary classifications by taking into account
every component of the confusion matrix to produce a fair
measurement even when datasets are unbalanced.
(TP x TN) — (FP x FN)

V(TP + FP)(TP + FN)(TN + FP)(TN + FN)

MCC = )

The mean squared error (MSE), which represents the total
prediction error, is calculated as the average of the squared
discrepancies between actual and projected values.

1 n
MSE = — > (yi — 9:)° (©)
"z

The coefficient of determination, or R2 score, quantifies the
percentage of the target variable’s variance that the model
can account for; values nearer 1 denote better performance.

iy (i —9:)°
i (yi —9)?
The Root Mean Squared Error (RMSE), which is the square

root of MSE, evaluates the distribution of residuals to provide
an interpretable indicator of prediction accuracy.

R*=1- @

RMSE = (3)

Mean Absolute Error (MAE) provides information about the
average error of the model by calculating the mean absolute
difference between actual and forecasted data.

1 & R
MAE = —~ 3 |yi — il ©)
i=1

FE. Explainable Al

We used Explainable Al (XAI) methods, such as SHAP
and LIME, to make the machine learning classification
and regression models more straightforward to understand.
LIME produced localized interpretations by perturbing input
attributes and observing their influence on predictions. In
contrast, SHAP delivered global insights by assigning con-
tribution scores to each feature according to how it affects
the model’s outputs [20]], [21]]. These tools helped clarify
how various attributes shaped the model’s behavior, ensuring
interpretability and offering clarity for domain experts in the
decision-making process.

IV. RESULT & DISCUSSION

This section presents the outcomes obtained from the
applied machine learning methods for cardiovascular risk
estimation and disease identification. Both regression and
classification algorithms were assessed using real-world and
synthetically generated datasets to ensure comprehensive and
reliable conclusions. The detailed analysis for each model is
presented below, supplemented with Explainable Al visual-
izations, residual plots, ROC curves, confusion matrices, and
tables.

A. Result Analysis

Table [] summarizes the performance metrics for differ-
ent classifiers in identifying cardiovascular disease, where
Random Forest demonstrated the highest effectiveness. It at-
tained top scores in F1-score (0.977), recall (0.981), precision
(0.974), MCC (0.952), and accuracy (0.976) on the SMOTE
data, showcasing its strength in balanced classification tasks.
Gradient Boosting and Decision Tree followed closely with
0.970 and 0.974, accuracy scores, respectively. On the other
hand, TabNet performed the worst, achieving an accuracy of



TABLE I
CLASSIFICATION MODELS PERFORMANCE FOR DIAGNOSIS OF CARDIOVASCULAR DISEASES BEFORE AND AFTER UTILIZING SMOTE

Classifiers F1-Score Recall Precision MCC Accuracy
Original SMOTE Original SMOTE Original SMOTE Original SMOTE Original SMOTE
TabNet 0.461 0.474 0.484 0.521 0.441 0.437 -0.204 -0.182 0.404 0.418
Naive Bayes 0.825 0.831 0.842 0.858 0.812 0.806 0.628 0.642 0.814 0.822
CatBoost 0.886 0.883 0.905 0.904 0.869 0.865 0.754 0.760 0.876 0.880
LightGBM 0.903 0.908 0.932 0.925 0.877 0.894 0.792 0.812 0.896 0.906
XGBoost 0.917 0.914 0.942 0.928 0.896 0.902 0.824 0.824 0.910 0.910
Gradient Boosting 0.960 0.972 0.966 0.976 0.955 0.969 0.916 0.942 0.956 0.970
KNN 0.871 0.884 0.881 0.896 0.863 0.874 0.726 0.760 0.862 0.878
Decision Tree 0.970 0.972 0.968 0.983 0.971 0.965 0.934 0.948 0.968 0.974
Random Forest 0.973 0.977 0.964 0.981 0.983 0.974 0.944 0.952 0.972 0.976
SVM 0.904 0.897 0.915 0.911 0.896 0.887 0.796 0.790 0.894 0.896
TABLE II
REGRESSION MODELS PERFORMANCE FOR PREDICTING CARDIOVASCULAR DISEASES BEFORE AND AFTER UTILIZING SMOTE
Regressors MAE RMSE MSE R?
Original SMOTE Original SMOTE Original SMOTE Original SMOTE
Lasso 1.382 1.400 1.670 1.704 2.793 2.907 0.388 0.354
Ridge 0.062 0.108 0.262 0.314 0.082 0.118 0.982 0.974
Linear Regression 0.036 0.066 0.184 0.238 0.034 0.061 0.984 0.992
CatBoost 0.858 0.868 1.068 1.078 1.144 1.167 0.750 0.982
LightGBM 0.076 0.098 0.278 0.262 0.087 0.081 0.978 0.982
XGBoost 0.030 0.054 0.264 0.254 0.074 0.073 0.984 0.984
Gradient Boosting 0.120 0.150 0.292 0.308 0.091 0.104 0.978 0.976
KNN 0.484 0.436 0.706 0.656 0.504 0.440 0.888 0.902
Decision Tree 0.030 0.060 0.256 0.274 0.069 0.087 0.986 0.980
Random Forest 0.084 0.102 0.278 0.278 0.083 0.086 0.980 0.980
SVR 0.140 0.152 0.340 0.344 0.118 0.129 0.974 0.972

0.418 on the artificial dataset. The TabNet is susceptible to
hyperparameter settings and relatively low effectiveness on
tiny structured data, which may be the cause of this under-
performance, impairing its capacity to generalize. Overall,
the outcomes reinforce the superiority of the Random Forest
model and demonstrate how class balancing via SMOTE
enhances predictive performance.

Table [lI| outlines the regression model outcomes for heart
disease risk estimation. Among all models, Linear Regression
yielded the best performance, achieving R2 scores of 0.984
for original data and 0.992 for SMOTE data, as well as the
lowest MAE of 0.036 on original and 0.066 on SMOTE data,
and MSE values of 0.034 on original and 0.061 on SMOTE
data, demonstrating excellent accuracy and minimal predic-
tion error. Models like XGBoost and Random Forest also
performed well, with Random Forest upholding consistent R2
scores of 0.980 on both datasets. On the other hand, CatBoost
produced the least favorable results, having the highest error
metrics, MAE of 0.858 and ,MSE of 1.144 and an R2 score
of 0.750 on actual data. These results highlight the superior
capability of Linear Regression in forecasting heart disease
risk.

B. Confusion Matrix Representations

Figure 2] shows the Random Forest’s confusion matrix both
before and after SMOTE was applied. In Figure [2(a)] while
the model misclassified two positive samples as negative
and four negative samples as positive before SMOTE, it
accurately predicted 105 positive and 96 negative samples. In
contrast, Figure illustrates improved performance after

SMOTE, accurately identifying 9966 samples as positive and
9554 samples as negative. The model incorrectly classified
287 negatives as positives and 193 positives as negatives. The
use of SMOTE enhances prediction balance by reducing false
negatives, thus improving sensitivity and overall model ef-
fectiveness in recognizing positive cases. This reflects strong
classification capability with minimal misclassification.

(a) Real (b) SMOTE

Fig. 2. Confusion Matrices of Random Forest for Heart Disease Diagnosis

C. ROC Curve Representations

Figure [3| shows the Random Forest’s ROC curve both be-
fore and after SMOTE was applied. The ROC curve displays
the False Positive Rate (FPR) versus the True Positive Rate
(TPR) across various threshold settings, serving as a tool to
evaluate classification performance. The curves for real and
synthetic datasets closely align, each achieving an AUC score
of 0.99. This elevated AUC suggests how well the model can



differentiate across classes. The slight variation between the
curves implies that SMOTE effectively handles the issue of
class distribution without degrading the model’s predictive
quality.

Fig. 3. ROC Curve of Random Forest for Heart Disease Diagnosis on Both
Real & Synthetic Data

D. Residual Analysis Representations

Figure [4] presents the Linear Regression model’s residual
analysis for both Real and SMOTE-generated data. In Figure
[(a)] residuals—defined as the differences between predicted
and actual values, are plotted against predicted outputs.
Similarly, Figure ()] displays a scatter plot comparing pre-
dicted values with residual differences, where the majority of
points lie near zero, signifying minimal prediction bias. The
visualizations demonstrate that residuals are mostly concen-
trated around zero, indicating effective model performance.
Nonetheless, a few scattered outliers exist, reflecting instances
of higher prediction error.

(a) Real (b) SMOTE

Fig. 4. Residual Analysis of Logistic Regression for Heart Disease Prognosis

E. Explainable Al (SHAP and LIME) Representations

Figure [5(a)] depicts the SHAP visualization for the RF
model after balancing the dataset, showing how significant
features like “sex” and “age” influence the model’s forecasts
in detecting cardiovascular disease. The SHAP interaction
values, which show how each feature affects the model’s
output, are displayed on the horizontal axis. Positive predic-
tions are pushed toward the heart disease positive class, while
negative predictions are pushed toward the negative class.

Figure[5(b)|illustrates the SHAP plot for the Linear Regres-
sor model applied to the regression task after SMOTE. The

figure displays, on the y-axis, the relative relevance of each
feature’s contribution to the model’s predictions. The x-axis
displays the SHAP values, indicating both the intensity and
direction of feature impact. Features such as age, Max Heart
Rate Reserve, and thalach (maximum heart rate) appear as
the most significant influential contributors to the regressor’s
prediction behavior.

(a) Diagnosis (b) Prognosis

Fig. 5. SHAP for Random Forest (Diagnosis) and Logistic Regression
(Prognosis) After Balancing the Dataset with SMOTE

Figure [6] shows the Random Forest’s LIME summary
plot following SMOTE classification, indicating the inter-
pretability of the classifier’s forecast for the identification of
heart disease. The likelihood of forecasting “Heart Disease”
(0.03) and “No Heart Disease” (0.97) for a particular case
is displayed. The prediction’s primary determinants, together
with their corresponding values and contribution weights,
are highlighted in the right panel. The model’s choice is
influenced by the values of several key features, including
“thal,” slope,” and “Heart Disease Risk Score,” which can
have a favorable or negative effect.

Generating LIME explanation for model: Random Forest on synthetic Data
Prediction probabilities No Heart Disease
0.46 < thal == 1.11,
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Fig. 6. LIME for Random Forest with SMOTE for Heart Disease Diagnosis

Figure [7] illustrates the LIME of the Linear Regressor
model after utilizing SMOTE in the prediction phase. The
instance’s anticipated value, which is heavily influenced by
important characteristics, falls between "No Heart Disease”
and “Heart Disease.” Features like age, thalach, and Max
Heart Rate Reserve are highlighted in the bar along with their
positive and negative contributions, demonstrating their im-
portance in influencing the model’s result. To put the forecast
in context, the feature values are listed in the accompanying
table.
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Fig. 7. LIME for LR with SMOTE for Heart Disease Prognosis

F. Discussion & Limitation

Through performance comparison among multiple models
and techniques, Random Forest emerged as the most reliable
method for cardiovascular disease classification, while Linear
Regression proved most effective for risk estimation. The
model’s strong performance metrics indicate its potential for
dependable use in practical applications. We also bench-
marked our framework against prior research discussed in
the related work section. As reflected in Table [T, our model
surpasses all previously examined models. Nonetheless, a
notable limitation of the proposed framework lies in its
reliance on the underlying dataset’s quality and variability.
Even though SMOTE was utilized to counteract data imbal-
ance, the data may still lack the diversity found in actual
clinical conditions, which could restrict the model’s capacity
to generalize effectively.

TABLE III
COMPARISON WITH STATE-OF-THE-ART

Ref. Model Findings

(2] Adaptive Boosting (AdaBoost) 95% Accuracy

[13] Deep Neural Network 95.30% Accuracy

[14] Neural Network 92% AccuracyAccuracy

[16] Decision Tree 95.76% Accuracy

[17] Multilayer Perceptron 87.28% Accuracy
Proposed | Random Forest for Diagnosis 97.6% with RF and

Model | Logistic Regression for Prognosis | 99.2% R? with LR

V. CONCLUSION aND FUTURE WORK

This research introduces a dependable and interpretable
machine learning approach for identifying and forecasting
Heart conditions, achieving an accuracy of 0.976 using
Random Forest for detection and a 0.992 R? score via
Linear Regression for risk prediction. By integrating powerful
algorithms with interpretability tools like SHAP and LIME,
the approach ensures high accuracy while shedding light on
the most influential risk indicators. SMOTE was instrumental
in addressing class imbalance, leading to enhanced results on
the synthetic dataset and reinforcing the model’s practical
relevance. This work emphasizes machine learning’s role in
early detection and prognosis, and the value of explainable
Al for trustworthy medical decision-making. Looking ahead,

future work may involve enriching the dataset with additional
clinical features, conducting long-term studies for progression
modeling, and evaluating the model’s effectiveness across
different demographic and healthcare settings.
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