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Abstract—The rapid advancement of deepfake technology has
raised serious concerns regarding digital authenticity, misinfor-
mation, and media trust. By enabling the creation of hyper-
realistic manipulated media, deepfakes pose significant risks
to security, privacy, and the integrity of digital communica-
tion. Social platforms are increasingly flooded with such AI-
generated content, which can deceive human perception, spread
misinformation, and undermine the credibility of multimedia
information. Therefore, early detection of deepfakes is crucial.
In this research, we focus on developing a robust detection
framework to distinguish between genuine and artificially gen-
erated deepfake face images. For this purpose, a dataset of
12.2k authentic images was collected, and an additional 12.2k
deepfake images were generated using a generative adversarial
network (GAN), ensuring a balanced dataset for real versus
fake image classification. We present a custom CNN-transformer
hybrid framework, TransCNN, for deepfake detection. The
proposed framework leverages convolutional layers for spatial
feature extraction and transformer-based attention mechanisms
to capture contextual dependencies within facial patterns. The
experimental evaluation demonstrates that the proposed CNN-
based Transformer, TransCNN model, achieves an exceptional
accuracy of 98.91%. This study underscores the importance
of hybrid deep learning approaches in addressing the growing
challenge of deepfake detection and highlights their potential for
safeguarding digital authenticity, particularly within the domain
of facial image verification.

Index Terms—Deepfake Detection, Convolutional Neural Net-
work, Transformer Model, Generative Adversarial Network.

I. INTRODUCTION

In recent years, advances in artificial intelligence have
given rise to deepfake technology, a powerful yet contro-
versial innovation capable of producing hyper-realistic ma-
nipulated images and videos that closely mimic authentic
media. Leveraging generative adversarial networks (GANs)
and other advanced neural architectures, deepfakes can con-
vincingly alter facial expressions, synthesize entirely new
identities, and even generate fabricated speech [1[]. While this
technology highlights the creative potential of generative Al
in fields such as entertainment, education, and digital content
creation, its misuse poses severe threats to digital security,
personal privacy, and public trust. Malicious applications of
deepfakes range from spreading misinformation and political
propaganda to identity theft, financial fraud, and cybercrime
[2]]. The increasing sophistication and accessibility of these
tools have led to a surge of Al-generated media across online
platforms, creating an urgent demand for reliable detection
systems capable of preserving the integrity and authenticity
of digital information. The challenge of deepfake detection
lies in the subtle visual and contextual cues embedded in
generated media, which can be imperceptible to the human
eye [3]]. Traditional computer vision methods often fail to

generalize against such highly realistic manipulations. As
a result, machine learning and deep learning have become
critical tools for addressing this pressing challenge [4], [5].
CNN-based models are effective in extracting spatial fea-
tures from facial structures, while transformer-based meth-
ods excel at capturing contextual dependencies. Combin-
ing these two approaches provides a promising avenue for
building robust and generalizable detection systems [6]. In
this research, a custom CNN-Transformer model, termed
TransCNN, was developed by integrating convolutional and
transformer architectures to effectively distinguish between
real and deepfake images. The main contributions
of this study are outlined as follows. A custom hybrid
CNN-Transformer framework was developed for deepfake
image detection, leveraging the complementary strengths of
CNN s in local feature extraction and Transformers in global
contextual modeling. A dataset of deepfake images was
created using a Generative Adversarial Network (GAN) to
provide realistic synthetic samples for training and evalu-
ation. Gradient-weighted Class Activation Mapping (Grad-
CAM) was employed to generate visual explanations and
enhance the interpretability of the model’s predictions. Fi-
nally, the effectiveness of the proposed approach was vali-
dated through a comprehensive performance evaluation using
standard classification metrics, including accuracy, preci-
sion, recall, and Fl-score. The remaining sections
of this study are organized as follows. Section II pro-
vides a detailed review of the existing literature on deepfake
detection, highlighting the current challenges. Section III de-
scribes the dataset preparation and methodology. Section IV
presents the experimental setup and implementation. Section
V presents the evaluation results and discusses the strengths
and limitations of the proposed model. Finally, Section VI
concludes with a summary of findings and future research
directions.

II. LITERATURE REVIEW

The rapid progress of generative models drives the emer-
gence of deepfakes. This growing phenomenon has prompted
significant research interest, as the malicious use of deep-
fakes can lead to severe implications ranging from misin-
formation and political manipulation to privacy violations
and cybercrime. As the realism of generated content im-
proves, traditional detection methods are often rendered
less effective, highlighting the need for more robust and
adaptive solutions. To better understand the evolution of
this domain, a review of existing studies was conducted,
focusing on the techniques, challenges, and research gaps
associated with deepfake detection. For instance, S. Sohail



Fig. 1. The Proposed workflow diagram for Deepfake Detection

et al. [7] explored deepfake detection using CNNs, RNNs,
and hybrid models such as CNN-LSTM, CNN-GRU, and
TCNs to capture both spatial and temporal features. They
incorporated GAN-based data augmentation and a fusion of
artifact inspection with facial landmark detection, achieving
over 99% accuracy across datasets, though challenges re-
main with compressed formats, noise, and generalization. F.
Zafar et al. 8] introduced a lightweight deepfake detection
framework combining EfficientNetBO with Temporal CNNs,
supported by MTCNN-based face alignment and augmen-
tation strategies like CutMix, MixUp, and RandomFErasing.
Their model leveraged FPN for multi-scale feature fusion,
attaining 92.45% accuracy on FFIW-10K with only 0.45
GFLOPs, balancing accuracy with computational efficiency
for real-world deployment. I. Ambreen et al. 9] proposed
a hybrid detection model integrating Vision Transformers
with CNNs to capture fine-grained spatial inconsistencies in
facial patterns. Evaluations on 76,161 images achieved 99%
accuracy, precision, recall, and F1-score, demonstrating the
superiority of transformer-based architectures over conven-
tional CNNs and underscoring their potential for reliable and
robust deepfake detection in diverse scenarios. A. Kumar
S. et al. [10] presented a hybrid approach that integrates
YOLOvS8 with RNNs for deepfake detection, where YOLOVS
extracts spatial features while RNNs capture temporal de-
pendencies and subtle inconsistencies across frames. Their
method efficiently identifies manipulated content in images,
providing an effective framework for detecting the misuse of
deepfake technologies in practical applications. D. Awasthi et
al. [11]] developed a multi-resolution deepfake detection algo-
rithm incorporating Viola-Jones face detection with RDWT,
MSVD, and DCT for frequency feature extraction. ANFIS-
based optimization improved robustness, while deep CNNs
(SqueezeNet, ResNet50, EfficientNet, InceptionV3) enhanced
performance. Their method improved imperceptibility by
52.14% and robustness by 7.51%, offering a strong solution
for secure image authentication. A. Jaiswal et al. [12|] pro-
posed an efficient CNN-VGG16 hybrid model for deepfake
detection, trained on benchmark datasets. Their framework
achieved 95% accuracy and 94% precision, outperforming

many existing approaches. The model demonstrated strong
generalization across manipulated samples, proving the ef-
fectiveness of integrating VGG16 features with CNN-based
architectures for detecting forged visual content. R. Sharma
et al. [13] investigated CNNs and advanced architectures,
including ResNet50 and XceptionNet, for deepfake detec-
tion using real and synthetic datasets. XceptionNet achieved
the highest performance with 84% accuracy, while prepro-
cessing improved feature quality and reduced noise. Their
work highlighted trade-offs across different architectures and
emphasized the importance of preprocessing for achieving
robust detection outcomes. K. Magoo et al. [|14] introduced a
CNN-based detection framework addressing both deepfake
images and forged signatures. Their system was trained
on diverse authentic and manipulated samples, achieving
superior accuracy and adaptability compared to conventional
techniques. This robust framework contributes to digital
forensics and cybersecurity, offering practical strategies for
content authentication in increasingly complex manipulation
environments. Despite significant progress in deepfake de-
tection using CNNs, RNNs, Vision Transformers, and hybrid
architectures, current methods face limitations. Many mod-
els achieve high accuracy only on specific small datasets,
lacking robustness against compression, noise, or unseen
manipulation techniques. Additionally, challenges remain in
balancing accuracy with computational efficiency, improving
generalization across domains, and integrating explainability
to ensure forensic reliability and applicability in real-world
scenarios.

I1I. MATERIALS AND METHODS

This section presents the research methodology of this
paper. The process includes dataset description, deepfake gen-
eration, image preprocessing, data augmentation, and building
the hybrid CNN-Transformer model. The proposed workflow
diagram is illustrated in Fig.

A. Dataset Collection and Preparation

In this research, the celebrity face image dataset was
utilized, which was collected from a public source [|15]]. The



Fig. 2. The architecture of the proposed CNN-Transformer hybrid model, illustrates how input images are processed through convolutional blocks for
spatial feature extraction, followed by Transformer layers to capture long-range dependencies. Grad-CAM is integrated to highlight discriminative regions,

while the classification head performs binary prediction with interpretability.

dataset consisted of 98 well-known celebrities with a total
of 12,216 authentic face images. After collecting the dataset,
all individual directories were removed and merged into a
single directory named “Real”. Since the dataset initially
contained only real images, deepfake samples were generated
using a pre-trained StyleGAN Ada2 model, producing the
same number of synthetic images, 12,216, to ensure class
balance. The final dataset, therefore, consisted of two cate-
gories, real and deepfake, with a total of 24,432 images. For
experimentation, the dataset was split into 70% for training,
15% for validation, and 15% for testing, corresponding to
17,102 training images, 3,664 validation images, and 3,666
testing images, with equal distribution maintained across both
classes. Fig. [3] shows sample images from the dataset, and
Table [I] shows the data distribution across train, test, and
validation.

(a) Real (b) Real (c) Real (d) Real (e) Real

(f) Fake (g) Fake (h) Fake (i) Fake (j) Fake

Fig. 3. Sample images representing Real and deepfake from the dataset.

TABLE 1
DATA DISTRIBUTION ACROSS TRAIN, TEST, AND VALIDATION SETS.

Class Training Validation Testing Total
Real 8,551 1,832 1,833 12,216
DeepFake 8,551 1,832 1,833 12,216
Total 17,102 3,664 3,666 24,432

B. Data Preprocessing and Augmentation

The dataset contained multiple image formats such as
JPG, PNG, and JPEG; therefore, all files were con-
verted into the JPG format, which is more suitable for
CNN and Transformer-based models. All images were

uniformly resized to 224x224 pixels to ensure consis-
tency in input dimensions for model training. To enhance
model generalization, data augmentation was applied using
ImageDataGenerator. The training generator included
rescaling (1./255), brightness variation (0.8—1.2), random
zoom (#0.1), horizontal flipping, and small width/height
shifts (+0.1), simulating real-world variability. Validation
and testing datasets were rescaled only, ensuring un-
biased evaluation. The dataset was finally loaded into
TensorFlow.Keras pipelines, preserving class balance
and enabling efficient batch-wise training and assessment.

C. Proposed CNN-Transformer Model

We proposed a novel hybrid CNN-Transformer architecture
for deepfake image classification, designed to capture both
local texture details and long-range spatial dependencies
characteristic of manipulated facial regions. Unlike transfer
learning approaches, our network is trained entirely from
scratch, with all parameters randomly initialized, allowing it
to learn task-specific representations directly from the training
data. The model accepts input images of size 224x224x3
and is composed of four sequential convolutional blocks,
followed by two transformer encoder modules, a Grad-CAM
target layer, and a compact classification head. The first,
second, third, and fourth blocks use 32, 64, 128, and 256
filters, respectively, all with 3x3 kernels, ReLU activation,
batch normalization, and max pooling for progressive spatial
downsampling. Transformer encoder modules are integrated
after the third and fourth blocks, enabling the model to
capture global context and complex inter-pixel relationships
at reduced spatial resolutions.

Each transformer encoder first applies layer normalization
and multi-head self-attention with four heads, followed by
a residual connection to preserve original features. The at-
tention output is then passed through a feed-forward network
with two dense layers (hidden dimension of 256) and dropout
regularization, followed by another residual connection to
stabilize learning and maintain gradient flow. This design
allows the model to simultaneously exploit local convolu-
tional features and global dependencies, which is crucial for
detecting subtle, spatially distributed manipulations present
in deepfake images.

After feature extraction, an additional convolutional layer
with 128 filters, named gradcam_conv, is applied as the



target layer for Grad-CAM visualization, enabling the gener-
ation of interpretable class activation maps. The classification
head then applies global average pooling, followed by a
fully connected layer with 128 units and ReLU activation. A
dropout rate of 0.4 is applied to prevent overfitting, and a final
sigmoid neuron outputs the probability that the input image
is real or fake. Therefore, we named the model TransCNN
to reflect its hybrid design that integrates Transformer and
CNN components for deepfake detection. Fig. [2| shows the
architecture of the proposed CNN-Transformer Model.

IV. EXPERIMENTAL SETUP AND IMPLEMENTATION

The experiments were carried out on a system running
Windows 11 with a 64-bit architecture, powered by an Intel®
Core™ 15 8th Generation processor clocked between 1.60
GHz and 3.90 GHz, equipped with 12 GB of DDR4 RAM and
an NVIDIA GeForce MX250 GPU with 2 GB of VRAM. For
computationally intensive tasks, such as image preprocessing,
model training, and evaluation, the Kaggle Notebook with
dual NVIDIA Tesla T4 GPUs was utilized to accelerate
computation. The end-to-end training and evaluation process
for the CNN-Transformer model took over six hours to
complete.

A. Training Setup

The proposed CNN-Transformer model was trained to
classify images as either deepfake or real. All input images
were resized to 224 x 224 x 3 and normalized before training
to ensure uniformity and improve convergence. The dataset
was randomly split into training, validation, and test sets
with a 70:15:15 ratio, ensuring class balance across all splits.
To enhance generalization and reduce the risk of overfit-
ting, data augmentation techniques were applied. The model
was trained for 50 epochs using a batch size of 8, which
was chosen to balance computational efficiency with stable
convergence given the dataset size and available hardware
resources.

B. Parameter Settings

The model was optimized using the Adam optimizer with
an initial learning rate of 1 x 10™%, and binary cross-entropy
loss was employed to handle the binary classification task.
Early stopping was applied with a patience of 15 epochs,
automatically restoring the best-performing weights once
validation performance ceased to improve. Additionally, a
learning rate scheduler reduced the learning rate by a factor
of 0.3 whenever the validation loss did not improve for
5 consecutive epochs. This parameter configuration ensured
stable optimization, faster convergence, and improved gener-
alization performance on unseen test data.

C. Evaluation Metrics

To assess the effectiveness of the proposed models, we
utilized several well-established evaluation metrics, includ-
ing the confusion matrix (CM), accuracy, precision, recall,
Fl-score, and the Receiver Operating Characteristic (ROC)
curve. The confusion matrix offers a clear representation
of the model’s predictive performance by summarizing the
number of correctly and incorrectly classified samples for
each class. The Table presents the primary evaluation

metrics along with their mathematical formulations. In bi-
nary classification scenarios, True Positives (TP) and True
Negatives (TN) denote correctly predicted samples, whereas
False Positives (FP) and False Negatives (FN) correspond to
misclassified cases.

TABLE II
PERFORMANCE EVALUATION METRICS
Metric Formula Description
Represents the overall correctness of predictions;
Accuracy % calculates the proportion of all correctly
classified instances relative to total samples.
Precision TP Fraction of predicted' pgsﬁtive cases _that are ‘ac}ually
TP+FP true; reflects the reliability of positive predictions.
Recall TP Measures the Fr}ode}’s capability to detect
TP+FN actual positive instances correctly.
Harmonic mean of precision and recall;
F1-Score| 2 %ﬁg:i:}} provides a balanced measure of performance
considering both false positives and false negatives.

D. Model Interpretability with Grad-CAM

To improve interpretability, Gradient-weighted Class Ac-
tivation Mapping (Grad-CAM) was used to visualize the
regions of input images that most influenced the model’s
predictions. Grad-CAM works by computing the gradient
of the predicted class score with respect to the final con-
volutional feature maps (gradcam_conv layer) and pro-
ducing a heatmap that highlights discriminative regions. The
heatmap was upsampled to the input image resolution and
overlaid on the original image to generate visual explanations.
This helps verify that the model focuses on relevant facial
areas, such as eyes, mouth, and skin textures, which are
often manipulated in deepfakes. These visualizations provide
qualitative evidence of the model’s reliability and support the
trustworthiness of its classification results.

V. EXPERIMENTAL RESULT ANALYSIS AND DISCUSSION

This section presents the experimental results of the pro-
posed CNN-Transformer model for the classification of deep-
fake images. To assess its effectiveness, we compare its
performance against a baseline CNN model that shares the
same convolutional architecture but excludes the transformer
encoder modules. The evaluation is conducted using widely
adopted metrics, including accuracy, precision, recall, and
Fl-score, to provide a comprehensive assessment of both
overall classification performance and the balance between
false positives and false negatives. In addition to quantitative
results, we also present model confidence scores alongside
output images and Grad-CAM visualizations, which offer
deeper insights into the model’s decision-making process.

A. Result Analysis

Fig. ] presents the training and validation performance
curves of the proposed CNN-Transformer model over 50
epochs. The training accuracy consistently reaches 100% after
the initial few epochs, while the validation accuracy fluctu-
ates within the range of 97.5% to 98.5%, indicating strong
generalization capability with minimal performance variation.
The training loss steadily decreases and approaches zero,
demonstrating effective model optimization. Meanwhile, the
validation loss stabilizes around 0.05 after early fluctuations,
reflecting that the model maintains a low and consistent error
rate on unseen data. These results collectively confirm that the



proposed architecture achieves efficient convergence, avoids
significant overfitting, and generalizes well to the validation
set.

Fig. 4. Training and validation accuracy and loss curves of the proposed
CNN-Transformer model.

Table reports the performance of the baseline CNN
model on the deepfake classification task. The model
achieved a precision of 0.9868, a recall of 0.9814, an F1-score
of 0.9841, and an accuracy of 0.9814 for the DeepFake class,
indicating good capability to detect manipulated images. For
the Real class, the model achieved a precision of 0.9816, a
recall of 0.9869, an Fl-score of 0.9842, and an accuracy of
0.9869, showing reasonably balanced performance between
false positives and false negatives. The macro and weighted
average metrics both achieved 0.9842, demonstrating stable
performance across both classes.

TABLE III
PERFORMANCE OF BASELINE CNN FOR DEEPFAKE FORENSICS

Class Precision Recall F1-score Accuracy Support
DeepFake 0.9868 0.9814 0.9841 0.9814 1833
Real 0.9816 0.9869 0.9842 0.9869 1833
Macro Avg 0.9842 0.9842 0.9842 0.9842 3666
Weighted Avg 0.9842 0.9842 0.9842 0.9842 3666

Table summarizes the classification performance of
the proposed TransCNN model on the deepfake detection
task. The model achieved consistently high scores across all
metrics, with a precision of 0.9870, recall of 0.9913, F1-score
of 0.9891, and accuracy of 0.9913 for the DeepFake class,
indicating its strong ability to correctly identify manipulated
images with minimal false positives. Similarly, for the Real
class, the model attained a precision of 0.9912, a recall of
0.9869, an Fl-score of 0.9891, and an accuracy of 0.9869,
reflecting balanced performance in distinguishing authentic
images. Both macro and weighted averages of precision,
recall, and Fl-score reached 0.9891, demonstrating that the
model performs consistently across both classes and is not
biased toward either. These results collectively highlight the
effectiveness of integrating transformer modules into the
CNN backbone, enabling the model to capture both local
texture patterns and global contextual information, which
leads to superior performance in deepfake classification.

TABLE IV
PERFORMANCE OF CNN-TRANSFORMER FOR DEEPFAKE FORENSICS

Class Precision Recall F1-score Accuracy Support
DeepFake 0.9870 0.9913 0.9891 0.9913 1833
Real 0.9912 0.9869 0.9891 0.9869 1833
Macro Avg 0.9891 0.9891 0.9891 0.9891 3666
Weighted Avg 0.9891 0.9891 0.9891 0.9891 3666

Fig. 3] illustrates the confusion matrix for the proposed
TransCNN model. The model correctly classified 1817 deep-
fake samples and 1809 real samples, achieving very low
misclassification rates with only 16 deepfakes misclassified
as real and 24 real samples misclassified as deepfakes.
These results correspond to a high overall accuracy, balanced
precision, and recall, demonstrating the model’s robustness
and ability to generalize well across both classes.

Fig. 5. Confusion matrix of the proposed CNN-Transformer model

Fig. [6] presents the Receiver Operating Characteristic
(ROC) curve of the proposed TransCNN model. The model
achieves an Area Under the Curve (AUC) of 1.00 for both
real and fake classes, indicating near-perfect discrimination
capability. The ROC curve closely aligns with the top-left
corner, demonstrating an almost zero false positive rate and
a true positive rate approaching one.

Fig. 6. ROC curve of the proposed CNN-Transformer model

Figure [/| illustrates the qualitative results of the pro-
posed TransCNN model for deepfake detection, showing
both correctly and confidently classified images. The model
consistently identifies real and deepfake faces with perfect
confidence scores, 1.00 for real faces, 0.00 for deepfakes,
across diverse facial appearances, lighting conditions, and
background settings. Real images are classified as ‘“Real”
with maximum confidence, while manipulated (deepfake)
images are labeled as “DeepFake” with zero confidence
toward the real class.

Figure §]illustrates the Grad-CAM visualizations generated
by the proposed TransCNN model for deepfake detection.
Each row presents the original image, its corresponding
Grad-CAM heatmap, and the overlay visualization. The
heatmaps highlight the discriminative regions that contributed
most to the model’s decision, revealing that the network
effectively focuses on facial regions such as eyes, mouth,
and surrounding textures, where manipulations are typically



Fig. 7. Sample classification results of the proposed CNN-Transformer
model with corresponding confidence scores, showcasing perfect detection
of both real and deepfake images across diverse samples.

present. The overlays demonstrate that the model attends
to subtle artifacts and inconsistencies in the manipulated
images, providing interpretability and transparency into the
decision-making process. These visualizations confirm that
the proposed architecture is capable of capturing both local
texture anomalies and global spatial relationships, leading to
improved classification performance.

Fig. 8. Grad-CAM visualizations of the proposed CNN-Transformer model,
highlighting key facial regions used to distinguish real and deepfake images.

B. Discussion and Limitations

The experimental results demonstrate that the proposed
TransCNN architecture consistently outperforms the baseline
CNN model across all evaluation metrics. Although the
improvement over the baseline CNN appears modest, it holds
significant value given the highly sensitive nature of deepfake
detection. Even minor performance gains can have substantial
implications in real-world applications, where a small number
of misclassifications could lead to serious ethical, social,
and legal consequences. Furthermore, we intentionally chose
not to compare our approach with state-of-the-art deepfake
detection methods, as differences in datasets, preprocessing
pipelines, and evaluation protocols would make such compar-
isons less meaningful and potentially misleading. However,
this work has several limitations. First, the model was trained
and evaluated on a single dataset, which may limit its
generalizability to unseen, real-world deepfakes with diverse
generation techniques and compression levels. Second, the
Transformer block introduces additional computational over-
head, which could hinder deployment in resource-constrained
or real-time environments. Third, the study does not analyze
the robustness of the model against adversarial attacks or per-
turbations, which is a growing concern in deepfake detection.

VI. CONCLUSION AND FUTURE WORK

This research presented a hybrid CNN-Transformer archi-
tecture for deepfake image classification, trained from scratch

to learn dataset-specific features without relying on pretrained
weights. The integration of Transformer encoder blocks af-
ter the deeper convolutional layers enabled the model to
capture both local texture information and global spatial
dependencies, resulting in improved performance over the
baseline CNN across all evaluation metrics. Grad-CAM vi-
sualizations confirmed that the model attends to semantically
meaningful facial regions, enhancing interpretability and trust
in its predictions. Future work will focus on extending the
evaluation to cross-dataset settings to assess generalizability
to real-world deepfakes, optimizing the Transformer module
for deployment in resource-constrained environments, and
investigating robustness against adversarial manipulations to
ensure reliability in practical applications.
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