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Abstract—The rapid growth of computer vision applications
has opened new possibilities for automated environmental
monitoring and weather forecasting. Accurate recognition of
weather phenomena from images is crucial for supporting cli-
mate research, improving situational awareness, and enhancing
the reliability of intelligent systems in real-world conditions.
However, the diverse visual characteristics of natural weather
events, such as rain, snow, fog, frost, hail, lightning, etc., make
this task highly challenging. In this research, we focus on devel-
oping a robust framework for automatically detecting weather
phenomena from images. For this purpose, a comprehensive
dataset of labeled weather-condition images was used to ensure
balanced representation across multiple categories. We present
a custom CNN architecture integrated with a Convolutional
Block Attention Module, which enhances feature learning by
adaptively refining both spatial and channel-wise represen-
tations. The proposed CBAM-CNN framework demonstrates
superior performance in capturing subtle visual cues associated
with different weather phenomena. Experimental evaluation
shows that the model achieves a highest accuracy of 87.61%,
significantly outperforming baseline CNN models. This study
highlights the effectiveness of attention-guided approaches for
environmental perception tasks and underscores their potential
for advancing intelligent weather monitoring systems.

Index Terms—Weather Classification, Convolutional Neural
Network, Convolutional Block Attention Module, Deep Learning

I. INTRODUCTION

THE growing integration of artificial intelligence (AI)
into environmental and meteorological applications has

opened new avenues for automated weather understanding
and analysis [1]. Among these developments, weather clas-
sification has become a vital research area, enabling systems
to recognize and interpret atmospheric conditions such as
sunny, cloudy, rainy, foggy, snowy, e.t.c. scenes from visual
data [2]. Accurate weather recognition plays a critical role
across domains such as intelligent transportation, autonomous
navigation, climate observation, and outdoor scene inter-
pretation. By leveraging visual cues from the environment,
AI-based systems can enhance situational awareness, im-
prove safety, and support real-time decision-making across
multiple applications [3]. Traditional weather recognition
techniques primarily relied on handcrafted features, such as
color histograms, edge descriptors, or texture patterns, which
often struggled under varying lighting, seasonal transitions,
and overlapping visual conditions. The recent integration
of deep learning methods, particularly Convolutional Neural
Networks (CNNs), has addressed many of these challenges
by automatically learning discriminative spatial representa-
tions directly from images [4] [5]. However, despite their

success, CNNs tend to emphasize dominant local patterns
while neglecting subtle contextual relationships that are crit-
ical for distinguishing visually similar weather scenes (e.g.,
cloudy vs. foggy). To overcome these limitations, attention
mechanisms have gained prominence for their ability to
adaptively focus on informative regions and features within
an image [6]. Building upon this idea, the Convolutional
Block Attention Module (CBAM) offers an efficient means
of refining feature maps through both channel and spatial
attention, thereby enhancing the representational power of
CNNs without significant computational overhead. Moti-
vated by this, the present study introduces a CBAM-CNN
framework to enhance the accuracy and generalization of
weather classification under diverse visual and environmental
conditions. The proposed architecture integrates spatial and
channel-wise attention mechanisms into the convolutional
backbone, enabling the model to focus on weather-relevant
features while suppressing irrelevant information. A balanced
dataset of diverse weather images was collected from publicly
available sources to train and evaluate the model under
real-world conditions. The main contributions of
this study can be summarized as follows: A CBAM-
CNN framework is proposed for effective weather classifi-
cation, leveraging attention mechanisms to enhance feature
discrimination and robustness under variable environmental
settings. To enhance interpretability, a Grad-CAM visual-
ization was employed to highlight discriminative regions
that influence model predictions, providing valuable insights
into the decision-making process. The proposed model’s
performance was thoroughly evaluated using standard metrics
such as accuracy, precision, recall, and F1-score, and com-
pared against state-of-the-art baselines. The remainder
of this paper is structured as follows. Section II re-
views existing literature on weather classification by deep
learning methods. Section III outlines the dataset preparation
and proposed methodology. Section IV details the exper-
imental setup and implementation. Section V presents the
results, followed by a discussion of findings and comparative
analysis. Finally, Section VI concludes the paper with insights
and directions for future research.

II. LITERATURE REVIEW

Extensive research using deep learning and computer vi-
sion techniques has been prompted by the growing need
for precise weather classification. These approaches aim to
classify diverse atmospheric conditions under varying illu-
mination and environmental factors, contributing to advance-



Fig. 1. The Proposed workflow diagram for Weather Phenomenon Classification

ments in automated monitoring and intelligent transportation
systems. To better understand the progress and methodologies
in this domain, several notable studies on weather classifica-
tion are reviewed. For instance, H. Tarwani et al. [7] con-
ducted research on weather classification using transfer learn-
ing with several CNN architectures, including ResNet50V2,
EfficientNetB5, and EfficientNetV2S. Their models were
trained across multiple weather conditions such as snow,
lightning, and haze, demonstrating strong adaptability and
robustness through fine-tuning strategies. S.A. Amiri et al.
[8] focused on improving weather classification performance
by systematically enhancing pretrained deep learning models
like ResNet50 and EfficientNet variants. Their architectural
modifications, involving the use of Global Average Pooling
and dropout layers, aimed to reduce overfitting and strengthen
generalization across multiple weather categories. V. Madaan
et al. [9] based their research on weather classification using
a fine-tuned VGG19 model trained on multiple visual weather
categories. Their approach leveraged transfer learning and
optimized hyperparameters to effectively capture distinct vi-
sual cues present in different weather conditions. V. Afxentiou
et al. [10] developed a structured evaluation methodology
for weather classification using CNN-based architectures.
Their study analyzed various models and datasets to assess
classification performance under different adverse weather
conditions, particularly for autonomous driving systems. S.
Singh et al. [11] proposed a deep learning-based weather
forecasting model designed to classify and predict mete-
orological phenomena such as temperature, precipitation,
and wind patterns. Their work compared data-driven deep
learning models with traditional forecasting techniques to
highlight improvements in accuracy and adaptability. Y. Lv et
al. [12] introduced a hybrid weather classification framework
that combined ResNet50-based deep feature extraction with
PCA and SVM. This approach effectively captured complex
weather patterns and improved classification in visually chal-

lenging scenarios. L. Sivaraman et al. [13] focused their
research on enhancing weather classification in low-light and
nighttime environments through a novel framework com-
bining CycleGAN-based domain adaptation and contrastive
learning. Their model addressed illumination inconsistencies
by transforming nighttime images into day-like representa-
tions while preserving weather-specific features. N. Shelke et
al. [14] developed a deep learning framework using a Fully
Convolutional Network combined with Long Short-Term
Memory (FCN-LSTM) for real-time weather classification.
Their method integrated spatial and temporal features from
image sequences to predict weather conditions effectively.
Overall, these studies demonstrate significant progress in
weather classification through transfer learning, hybrid deep
learning architectures, and domain adaptation techniques.
However, challenges remain in ensuring model generaliza-
tion across unseen environments, reducing computational
complexity, and maintaining consistent performance under
varying visual and environmental conditions.

III. MATERIALS AND METHODS

This section outlines the research methodology adopted for
the weather classification task. The overall process involves
dataset preparation, image preprocessing, data augmentation,
and the development of the proposed CBAM-CNN model.
An overview of the workflow is illustrated in Fig. 1

A. Dataset

The “Weather phenomenon database,” collected from The
Harvard Dataverse [15], was employed in this study. The
dataset comprises high-quality images representing 11 dis-
tinct weather conditions, including dew, fog, frost, glaze, hail,
lightning, rain, rainbow, storm, and snow scenes. The author
of this dataset collected weather images from various online
sources to capture real-world visual diversity and ensure
robustness in model training. The dataset consists of a total of
6,862 images. For the experiments, it was divided into 70%



Fig. 2. The architecture of the Proposed CBAM-CNN Model illustrates the sequential architecture for multiclass weather classification, utilizing four
Convolutional Blocks (with CBAM for spatial and channel attention) to extract robust features. The network integrates a Grad-CAM target layer for
interpretability and culminates in a final Softmax layer for prediction across 11 classes (0-10)

training, 15% validation, and 15% testing subsets, resulting
in 4,731 training images, 1,023 validation images, and 1,041
testing image, while maintaining an even class distribution
throughout the dataset. A sample images from each class
shown in Fig. 3,

(a) Dew (b) Fog-smog (c) Frost (d) Glaze

(e) Hail (f) Lightning (g) Rain (h) Rainbow

(i) Rime (j) Sandstorm (k) Snow

Fig. 3. Sample images representing different weather phenomenon from the
Weather phenomenon database.

B. Data Preprocessing and Augmentation

The dataset contained images in multiple formats, in-
cluding JPG, PNG, and JPEG. To maintain consistency,
all files were converted to the JPG format, which is well-
suited for CNN and attention-based architectures. Each image
was then resized to 224 × 224 pixels and rescaled to a
[0, 1] range to normalize pixel values and improve model
convergence. To enhance generalization, data augmentation
was performed using the ImageDataGenerator function.
The training generator applied rescaling (1./255), brightness
variation (0.8–1.2), random zoom (±0.1), horizontal flipping,
and small width and height shifts (±0.1), simulating real-
world variability. For validation and testing, only rescaling
was applied to ensure an unbiased evaluation. Finally, the
preprocessed dataset was loaded into TensorFlow.Keras
pipelines preserve class balance and enable efficient batch-
wise training and evaluation.

C. Proposed CBAM-CNN Model

In this study, we propose a CBAM-CNN architecture de-
signed to enhance the accuracy and interpretability of weather
image classification by integrating attention mechanisms into
a convolutional backbone. The model is constructed from four

sequential convolutional blocks, each followed by batch nor-
malization, a CBAM (Convolutional Block Attention Mod-
ule), and max-pooling for progressive spatial downsampling.
The first, second, third, and fourth blocks employ 32, 64,
128, and 256 filters, respectively, with 3×3 kernels and ReLU
activation, enabling the network to effectively extract hierar-
chical visual features. The embedded CBAM modules refine
feature representations through channel and spatial attention,
allowing the network to emphasize weather-relevant visual
cues (such as cloud texture, lighting, or precipitation patterns)
while suppressing redundant background information.

Following the final block, an additional convolutional layer
with 128 filters, denoted as gradcam_conv, serves as the
Grad-CAM target layer to facilitate visual interpretability
through class activation maps. The extracted features are then
aggregated via global average pooling and passed through
a fully connected layer of 128 neurons with ReLU activa-
tion and a dropout rate of 0.4 to reduce overfitting. The
final output layer employs a softmax activation function
to classify images into 11 distinct weather categories. The
model was trained from scratch using the Adam optimizer
with a learning rate of 0.0001 and categorical cross-entropy
loss, enabling efficient end-to-end optimization for multi-
class weather recognition. The overall architecture of the
proposed CBAM-CNN model is illustrated in Fig. 2.

IV. EXPERIMENTAL SETUP AND IMPLEMENTATION

The experimental work for this study was conducted using
a hybrid computational setup, combining a local machine
with a cloud-based platform to manage the demanding work-
load. The local system, a 64-bit Windows 11 PC, was config-
ured with an Intel® Core™ i5 8th Generation processor, 12
GB of DDR4 RAM, and an NVIDIA GeForce MX250 GPU
with 2 GB of VRAM. For more computationally intensive
operations like image preprocessing, model training, and
evaluation, we leveraged Kaggle Notebooks, which provided
dual NVIDIA Tesla T4 GPUs to significantly speed up the
process. This combined approach allowed us to efficiently
handle the resource-heavy tasks, with the complete training
and evaluation of the proposed CBAM-CNN model taking
just over three hours.

A. Training Setup

The proposed CBAM-CNN model was trained to classify
weather images into 11 distinct categories. All input images
were resized to 224x224x3 and normalized before training to



ensure uniformity and improve convergence. The dataset was
randomly split into training, validation, and test sets with
an 70:15:15 ratio, ensuring class balance across all splits.
To enhance generalization and reduce the risk of overfitting,
various data augmentation techniques were applied, including
random horizontal flips, rotations, and zooms. The model
was trained for 100 epochs using a batch size of 32, which
was chosen to balance computational efficiency with stable
convergence given the dataset size and available hardware
resources.

B. Parameter Setting

The proposed model was optimized using the Adam opti-
mizer with a learning rate of 1×10−4 and categorical cross-
entropy loss to handle the multi-class classification task.
Early stopping was applied with a patience of 20 epochs,
automatically restoring the best-performing weights once
validation performance ceased to improve. Additionally, a
learning rate scheduler reduced the learning rate by a factor
of 0.5 whenever the validation loss did not improve for
10 consecutive epochs. This parameter configuration ensured
stable optimization, faster convergence, and improved gener-
alization performance on unseen test data.

C. Evaluation Metrics

To evaluate the efficacy of our models, we employed sev-
eral standard metrics, including the confusion matrix (CM),
accuracy, precision, recall, and the F1-score. The CM pro-
vides a granular view of the model’s performance by detailing
correct and incorrect predictions for each class. The key
metrics and their mathematical definitions are summarized
in Table I. True Positives (TP) and True Negatives (TN)
represent successful predictions, while False Positives (FP)
and False Negatives (FN) denote misclassified instances.

TABLE I
PERFORMANCE EVALUATION METRICS

Metric Formula Description

Accuracy TP+TN
TP+TN+FP+FN

The proportion of all correct predictions
out of the total number of samples.

Precision TP
TP+FP

The fraction of positive predictions that were
genuinely positive; indicates prediction reliability.

Recall TP
TP+FN

The fraction of all actual positive cases that
were correctly identified by the model.

F1-Score 2 × Precision×Recall
Precision+Recall

The harmonic average of precision and recall;
a balanced measure that considers both

false positives and false negatives.

D. Grad-CAM

To enhance the model’s interpretability, we used Gradient-
weighted Class Activation Mapping (Grad-CAM) to visually
inspect which regions of an input image were most influential
in the model’s prediction. Grad-CAM generates a heatmap
by computing the gradient of the predicted class score
with respect to the feature maps of the final convolutional
layer, specifically the gradcam_conv layer. This heatmap,
which highlights discriminative areas, is then resized to
match the original image resolution and overlaid to create
a visual explanation. This process allows us to confirm that
the model is correctly focusing on weather-relevant cues,
such as cloud formations, lighting conditions, or precipita-
tion patterns, rather than irrelevant background information.

These visualizations provide strong qualitative evidence of
the model’s reasoning and enhance the trustworthiness of its
classification results.

V. EXPERIMENTAL RESULT ANALYSIS AND DISCUSSION

This section details the experimental findings for the pro-
posed CBAM-CNN model in multi-class weather image clas-
sification. We quantify the performance gains by comparing
it directly against a baseline CNN that omits the CBAM
attention mechanism. Evaluation relies on standard metrics,
accuracy, precision, recall, and F1-score, to comprehensively
gauge overall classification quality and performance across
the distinct weather classes. Furthermore, we provide vi-
sual evidence of the model’s behavior through learning
curves, ROC curves, confusion matrices, confidence scores,
and Grad-CAM visualizations to fully interpret its decision-
making process and feature selection.

A. Result Analysis

Fig. 4 illustrates the learning curves of the proposed
CBAM-CNN model over 100 epochs, showing both accuracy
and loss curves. The accuracy plot shows rapid initial learn-
ing, with validation accuracy stabilizing around 88% after
approximately 60 epochs, maintaining a small, consistent
gap from the training accuracy, which approaches 95%. This
stability is mirrored in the loss plot, where both training
and validation losses decrease sharply before reaching a low,
steady state. The overall convergence behavior, characterized
by stable validation performance and a minimal gap between
curves, indicates that the model is robust and generalizes well
to unseen data without significant overfitting.

Fig. 4. Training and validation accuracy and loss curves of the proposed
CBAM-CNN model.

Table II presents the performance metrics of the baseline
CNN model for weather image classification. The model
achieved an overall accuracy of 81.75%, with a weighted
average F1-score of 0.82. The results show strong perfor-
mance across several classes, particularly for “Dew” (F1-
score of 0.90) and “Lightning” (F1-score of 0.93), but weaker
performance on others, such as “Frost” (F1-score of 0.59)
and “Glaze” (F1-score of 0.66). These variations indicate
that while the model generalizes well across most classes, its
ability to correctly identify less frequent or more challenging
categories is limited.

Table III summarizes the performance metrics for the
proposed CBAM-CNN model, highlighting its enhanced clas-
sification capabilities. The model achieved a notable overall
accuracy of 87.61% and a weighted average F1-score of 0.87,
demonstrating a significant improvement over the baseline
CNN model. The results show strong performance across
most weather classes, with particularly high F1-scores for



TABLE II
PERFORMANCE OF THE BASELINE CNN MODEL

Class Precision Recall F1-Score Support

Dew 0.93 0.88 0.90 106
Fogsmog 0.86 0.88 0.87 129
Frost 0.72 0.50 0.59 72
Glaze 0.60 0.73 0.66 97
Hail 0.85 0.79 0.82 90
Lightning 0.92 0.95 0.93 58
Rain 0.81 0.85 0.83 80
Rainbow 1.00 0.75 0.86 36
Rime 0.85 0.87 0.86 174
Sandstorm 0.89 0.89 0.89 105
Snow 0.69 0.77 0.73 94

Weighted Avg 0.82 0.82 0.82 1041

Overall Accuracy: 0.8175

“Lightning” (0.97), “Rainbow” (0.93), “Dew” (0.92), and
“Sandstorm” (0.92). While performance on “Frost” remains
the lowest (F1-score of 0.72), the model shows improved
generalization across all classes, reflecting the effectiveness
of the integrated CBAM attention mechanism in refining key
features.

TABLE III
PERFORMANCE OF THE PROPOSED CBAM-CNN MODEL

Class Precision Recall F1-Score Support

Dew 0.93 0.91 0.92 106
Fogsmog 0.88 0.92 0.90 129
Frost 0.82 0.64 0.72 72
Glaze 0.77 0.74 0.75 97
Hail 0.94 0.86 0.90 90
Lightning 0.97 0.97 0.97 58
Rain 0.82 0.94 0.88 80
Rainbow 0.94 0.92 0.93 36
Rime 0.85 0.94 0.89 174
Sandstorm 0.93 0.91 0.92 105
Snow 0.86 0.84 0.85 94

Weighted Avg 0.88 0.88 0.87 1041

Overall Accuracy: 0.8761

Fig. 5 presents the confusion matrix for the CBAM-CNN
model, providing a detailed view of its classification per-
formance across 11 weather classes. The diagonal elements
show the number of correctly classified images, indicating
high true positive counts for “Rime” (163), “Fogsmog” (119),
and “Sandstorm” (96), among others. The off-diagonal values
represent misclassifications, such as a few “Fogsmog” images
being incorrectly classified as “Sandstorm” (5) and “Glaze”
images being mistaken for “Rime” (11). The heatmap’s
darker shades along the diagonal confirm the model’s strong
performance and its ability to correctly identify the majority
of instances for most weather types.

Fig. 6 displays the Receiver Operating Characteristic
(ROC) curve for the CBAM-CNN model, highlighting its
high-performance multi-class classification ability. The plot
shows the trade-off between the True Positive Rate and
the False Positive Rate for each of the 11 weather classes,
with each class achieving an Area Under the Curve (AUC)
between 0.98 and 1.00. The micro-average AUC of 0.99 indi-
cates that the model demonstrates excellent overall discrimi-
native power, significantly outperforming a random classifier
(represented by the dashed gray line). The curves’ proximity
to the top-left corner of the graph confirms the model’s high

Fig. 5. Confusion matrix of the proposed CBAM-CNN model

true positive rates and low false positive rates, indicating a
robust and reliable performance.

Fig. 6. ROC curve of the proposed CBAM-CNN model

Fig. 7 displays Grad-CAM heatmaps generated by the
CBAM-CNN model across various weather images. Each
set of three images (Original Image, Grad-CAM Heatmap,
and Grad-CAM Overlay) visually confirms that the model is
effectively focusing on weather-relevant cues, such as snow
texture, frost patterns, rainbow arcs, and lighting conditions,
to make its classifications. The red and yellow regions in
the heatmaps precisely highlight the most discriminative
visual evidence, providing qualitative proof of the model’s
interpretability and reliability.

Fig. 7. Grad-CAM visualizations of the proposed CBAM-CNN model,
highlighting key regions used to distinguish different types of weather
conditions



Fig. 8. Sample classification results of the proposed CBAM-CNN model with corresponding confidence scores, showcasing perfect detection of different
weather condition images across diverse samples.

Fig. 8 presents sample classification results from the
proposed CBAM-CNN model, accompanied by their corre-
sponding confidence scores. The visualization showcases the
model’s high effectiveness in accurately classifying diverse
weather conditions. For images that were correctly predicted
(where Pred matches Actual), the model consistently exhibits
high confidence scores (mostly 0.90 to 1.00). For instance, the
model predicts “Sandstorm,” “Rime,” and “Lightning” with
perfect confidence (1.00). The samples serve as qualitative
evidence of the model’s robust performance and its ability
to correctly identify distinct weather features, demonstrating
reliable performance across a variety of visual scenarios.

B. Discussion and Limitations

The comparative experimental analysis confirms that the
proposed CBAM-CNN model reliably surpasses the base-
line CNN architecture across all key quantitative metrics.
This substantial performance leap is directly attributed to
the integrated CBAM module, which enhances the model’s
feature extraction by selectively emphasizing critical weather-
related visual cues. Given the critical nature of accurate
weather monitoring for public safety and logistical planning,
the improved robustness of the CBAM-CNN holds tangible
real-world value. We chose to focus solely on the internal
comparison against a structurally identical baseline to provide
a clear, apples-to-apples validation of the attention mecha-
nism’s efficacy, rather than engaging in potentially inconsis-
tent comparisons with external state-of-the-art methods that
use disparate benchmarks. However, this study is not without
limitations. First, training and validation were confined to
a single, curated dataset, which may constrain the model’s
ability to generalize to real-time, noisy images captured
under diverse geographic and sensor conditions. Second, the
addition of the CBAM module introduces an inherent increase
in parameter count and computational load, which could pose
a challenge for deployment in low-power and edge-computing
environments.

VI. CONCLUSION AND FUTURE PROSPECTS

This study introduced the CBAM-CNN architecture for
robust multi-class weather image classification, trained with-
out leveraging pre-trained weights to ensure full control over
feature learning. By incorporating the Convolutional Block
Attention Module (CBAM) into the convolutional backbone,
the model successfully enhances feature representation by
selectively emphasizing weather-relevant visual cues and sup-
pressing noise. This integration led to significant performance
improvements over the baseline CNN across all metrics.

The Grad-CAM visualizations affirmed the model’s inter-
pretability by confirming it focuses on semantically critical
areas, such as cloud formations, lighting, and precipitation
patterns, thereby increasing confidence in its classification
outcomes. Future research will concentrate on three primary
areas: evaluating the model’s generalizability across diverse
real-world weather datasets; optimizing the computational
efficiency of the attention module for deployment in resource-
limited, edge-computing scenarios; and analyzing the model’s
resilience to image perturbations and domain shifts to ensure
long-term dependability in atmospheric monitoring systems.
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